Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.317
Filtrar
1.
Int J Nanomedicine ; 19: 3031-3044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562612

RESUMO

Purpose: Peripheral nerve damage lacks an appropriate diagnosis consistent with the patient's symptoms, despite expensive magnetic resonance imaging or electrodiagnostic assessments, which cause discomfort. Ultrasonography is valuable for diagnosing and treating nerve lesions; however, it is unsuitable for detecting small lesions. Poly(vanillin-oxalate) (PVO) nanoparticles are prepared from vanillin, a phytochemical with antioxidant and anti-inflammatory properties. Previously, PVO nanoparticles were cleaved by H2O2 to release vanillin, exert therapeutic efficacy, and generate CO2 to increase ultrasound contrast. However, the role of PVO nanoparticles in peripheral nerve lesion models is still unknown. Herein, we aimed to determine whether PVO nanoparticles can function as contrast and therapeutic agents for nerve lesions. Methods: To induce sciatic neuritis, rats were administered a perineural injection of carrageenan using a nerve stimulator under ultrasonographic guidance, and PVO nanoparticles were injected perineurally to evaluate ultrasonographic contrast and therapeutic effects. Reverse transcription-quantitative PCR was performed to detect mRNA levels of pro-inflammatory cytokines, ie, tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2. Results: In the rat model of sciatic neuritis, PVO nanoparticles generated CO2 bubbles to increase ultrasonographic contrast, and a single perineural injection of PVO nanoparticles suppressed the expression of tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2, reduced the expression of F4/80, and increased the expression of GAP43. Conclusion: The results of the current study suggest that PVO nanoparticles could be developed as ultrasonographic contrast agents and therapeutic agents for nerve lesions.


Assuntos
Benzaldeídos , Nanopartículas , Neuropatia Ciática , Ratos , Humanos , Animais , Peróxido de Hidrogênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Dióxido de Carbono , Ciclo-Oxigenase 2/metabolismo , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Nanopartículas/química , Nervo Isquiático/diagnóstico por imagem , Nervo Isquiático/metabolismo
2.
Curr Microbiol ; 81(6): 156, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656548

RESUMO

Aspergillus fumigatus and Fusarium solani infections have become severe health threat; both pathogens are considered a priority due to the increasing emergence of antifungal-resistant strains and high mortality rates. Therefore, the discovery of new therapeutic strategies has become crucial. In this study, we evaluated the antifungal and antivirulence effects of vanillin and tannic acid against Aspergillus fumigatus and Fusarium solani. The minimum inhibitory concentrations of the compounds were determined by the microdilution method in RPMI broth in 96-well microplates according to CLSI. Conidial germination, protease production, biofilm formation, and in vivo therapeutic efficacy assays were performed. The results demonstrated that vanillin and tannic acid had antifungal activity against Aspergillus fumigatus, while tannic acid only exhibited antifungal activity against Fusarium solani. We found that vanillin and tannic acid inhibited conidial germination and secreted protease production and biofilm formation of the fungal pathogens using sub-inhibitory concentrations. Besides, vanillin and tannic acid altered the fungal membrane permeability, and both compounds showed therapeutic effect against aspergillosis and fusariosis in an infection model in Galleria mellonella larvae. Our results highlight the antivirulence effect of vanillin and tannic acid against priority pathogenic fungi as a possible therapeutic alternative for human fungal infections.


Assuntos
Antifúngicos , Aspergillus fumigatus , Benzaldeídos , Biofilmes , Fusarium , Testes de Sensibilidade Microbiana , Polifenóis , Taninos , Benzaldeídos/farmacologia , Fusarium/efeitos dos fármacos , Taninos/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Animais , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Virulência/efeitos dos fármacos , Larva/microbiologia , Larva/efeitos dos fármacos , Fusariose/tratamento farmacológico , Fusariose/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Mariposas/microbiologia , Mariposas/efeitos dos fármacos
3.
Water Environ Res ; 96(4): e11027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659148

RESUMO

In this study, we synthesized magnetic MnFe2O4/ZIF-67 composite catalysts using a straightforward method, yielding catalysts that exhibited outstanding performance in catalyzing the ozonation of vanillin. This exceptional catalytic efficiency arose from the synergistic interplay between MnFe2O4 and ZIF-67. Comprehensive characterization via x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FE-SEM), and energy dispersive spectroscopy (EDS) confirmed that the incorporation of MnFe2O4 promoted the creation of oxygen vacancies, resulting in an increased presence of l adsorbed oxygen (Oads) and the generation of additional ·OH groups on the catalyst surface. Utilizing ZIF-67 as the carrier markedly enhanced the specific surface area of the catalyst, augmenting the exposure of active sites, thus improving the degradation efficiency and reducing the energy consumption. The effects of different experimental parameters (catalyst type, initial vanillin concentration, ozone dosage, initial pH value, and catalyst dosage) were also investigated, and the optimal experimental parameters (300 mg/L1.0-MnFe2O4/ZIF-67, vanillin concentration = 250 mg/L, O3 concentration = 12 mg/min, pH = 7) were obtained. The vanillin removal efficiency of MnFe2O4/ZIF-67 was increased from 74.95% to 99.54% after 30 min of reaction, and the magnetic separation of MnFe2O4/ZIF-67 was easy to be recycled and stable, and the vanillin removal efficiency of MnFe2O4/ZIF-67 was only decreased by about 8.92% after 5 cycles. Additionally, we delved into the synergistic effects and catalytic mechanism of the catalysts through kinetic fitting, reactive oxygen quenching experiments, and electron transfer analysis. This multifaceted approach provides a comprehensive understanding of the enhanced ozonation process catalyzed by MnFe2O4/ZIF-67 composite catalysts, shedding light on their potential applications in advanced oxidation processes. PRACTITIONER POINTS: A stable and recyclable magnetic composite MnFe2O4/ZIF-67 catalyst was synthesized through a simple method. The synergistic effect and catalytic mechanism of the MnFe2O4/ZIF-67 catalyst were comprehensively analyzed and discussed. A kinetic model for the catalytic ozone oxidation of vanillin was introduced, providing valuable insights into the reaction dynamics.


Assuntos
Benzaldeídos , Compostos Férricos , Imidazóis , Ozônio , Ozônio/química , Benzaldeídos/química , Catálise , Compostos Férricos/química , Compostos de Manganês/química , Zeolitas/química , Poluentes Químicos da Água/química
4.
J Agric Food Chem ; 72(12): 6471-6480, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38462720

RESUMO

Increasing consumer aversion to non-natural flavoring substances is prompting a heightened interest in enzymatic processes for flavor production. This includes methylation reactions, which are often performed by using hazardous chemicals. By correlation of aroma profile data and transcriptomic analysis, a novel O-methyltransferase (OMT) catalyzing a respective reaction within the formation of p-anisaldehyde was identified in the mushroom Pleurotus sapidus. Heterologous expression in E. coli followed by purification allowed for further characterization of the enzyme. Besides p-hydroxybenzaldehyde, the proposed precursor of p-anisaldehyde, the enzyme catalyzed the methylation of further hydroxylated aromatic compounds at the meta- and para-position. The Km values determined for p-hydroxybenzaldehyde and S-adenosyl-l-methionine were 80 and 107 µM, respectively. Surprisingly, the studied enzyme enabled the transmethylation of thiol-nucleophiles, as indicated by the formation of 2-methyl-3-(methylthio)furan from 2-methyl-3-furanthiol. Moreover, the enzyme was crystallized at a resolution of 2.0 Å, representing the first published crystal structure of a basidiomycetous OMT.


Assuntos
Benzaldeídos , Metiltransferases , Pleurotus , Metiltransferases/metabolismo , Escherichia coli/metabolismo , Pleurotus/metabolismo
5.
J Agric Food Chem ; 72(12): 6463-6470, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501643

RESUMO

Eugenol, the main component of essential oil from the Syzygium aromaticum clove tree, has great potential as an alternative bioresource feedstock for biosynthesis purposes. Although eugenol degradation to ferulic acid was investigated, an efficient method for directly converting eugenol to targeted natural products has not been established. Herein we identified the inherent inhibitions by simply combining the previously reported ferulic acid biosynthetic pathway and vanillin biosynthetic pathway. To overcome this, we developed a novel biosynthetic pathway for converting eugenol into vanillin, by introducing cinnamoyl-CoA reductase (CCR), which catalyzes conversion of coniferyl aldehyde to feruloyl-CoA. This approach bypasses the need for two catalysts, namely coniferyl aldehyde dehydrogenase and feruloyl-CoA synthetase, thereby eliminating inhibition while simplifying the pathway. To further improve efficiency, we enhanced CCR catalytic efficiency via directed evolution and leveraged an artificialvanillin biosensor for high-throughput screening. Switching the cofactor preference of CCR from NADP+ to NAD+ significantly improved pathway efficiency. This newly designed pathway provides an alternative strategy for efficiently biosynthesizing feruloyl-CoA-derived natural products using eugenol.


Assuntos
Acil Coenzima A , Benzaldeídos , Vias Biossintéticas , Ácidos Cumáricos , Eugenol , Eugenol/metabolismo
6.
Microb Biotechnol ; 17(3): e14448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498302

RESUMO

Pseudomonas putida is a soil bacterium with multiple uses in fermentation and biotransformation processes. P. putida ATCC 12633 can biotransform benzaldehyde and other aldehydes into valuable α-hydroxyketones, such as (S)-2-hydroxypropiophenone. However, poor tolerance of this strain toward chaotropic aldehydes hampers efficient biotransformation processes. To circumvent this problem, we expressed the gene encoding the global regulator PprI from Deinococcus radiodurans, an inducer of pleiotropic proteins promoting DNA repair, in P. putida. Fine-tuned gene expression was achieved using an expression plasmid under the control of the LacIQ /Ptrc system, and the cross-protective role of PprI was assessed against multiple stress treatments. Moreover, the stress-tolerant P. putida strain was tested for 2-hydroxypropiophenone production using whole resting cells in the presence of relevant aldehyde substrates. P. putida cells harbouring the global transcriptional regulator exhibited high tolerance toward benzaldehyde, acetaldehyde, ethanol, butanol, NaCl, H2 O2 and thermal stress, thereby reflecting the multistress protection profile conferred by PprI. Additionally, the engineered cells converted aldehydes to 2-hydroxypropiophenone more efficiently than the parental P. putida strain. 2-Hydroxypropiophenone concentration reached 1.6 g L-1 upon a 3-h incubation under optimized conditions, at a cell concentration of 0.033 g wet cell weight mL-1 in the presence of 20 mM benzaldehyde and 600 mM acetaldehyde. Product yield and productivity were 0.74 g 2-HPP g-1 benzaldehyde and 0.089 g 2-HPP g cell dry weight-1 h-1 , respectively, 35% higher than the control experiments. Taken together, these results demonstrate that introducing PprI from D. radiodurans enhances chaotrope tolerance and 2-HPP production in P. putida ATCC 12633.


Assuntos
Deinococcus , Hidroxipropiofenona , Pseudomonas putida , Benzaldeídos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Deinococcus/genética , Acetaldeído/metabolismo
7.
An Acad Bras Cienc ; 96(1): e20220875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511740

RESUMO

Compounds with a pyrazoline scaffold are useful as sensors for fluorescence detection of different types of analytes. Recovery of a pyrazoline-based sensor with a view to use it recurrently would be more facile when the sensing molecule is attached to a solid support. A reaction sequence has been designed to synthesize two benzaldehyde-pyrazoline hybrids as examples of a hitherto unknown type of compounds to be employed for the potential derivatization of polymers containing primary amino groups through azomethine formation. All intermediates, including the fairly unstable N1 -unsubstituted pyrazolines, along with the target compounds have been structurally characterized, with an emphasis on their particular NMR features. Examination of the photophysical properties of these benzaldehyde-pyrazoline hybrids showed that, despite the shortening of the extended N1-N2-C3 conjugated system common to 1,3,5-triarylpyrazolines through the replacement of the aryl at N1 by an aryloxyacetyl moiety, the novel compounds exhibit emission maxima at approximately 350 nm. Moreover, the introduction of a moderately electron-withdrawing substituent such as chlorine in the phenyl at C3 of pyrazoline leads to an amplification of fluorescence intensity.


Assuntos
Benzaldeídos , Polímeros , Pirazóis/química , Espectroscopia de Ressonância Magnética , Corantes
8.
J Biotechnol ; 386: 19-27, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38521166

RESUMO

Vanillin is a valuable natural product that can be used as a fragrance and additive. Recent research in the biosynthesis of vanillin has brought attention to a key enzyme, carboxylic acid reductase (CAR), which catalyzes the reduction of vanillic acid to vanillin. Nevertheless, the biosynthesis of vanillin is hampered by the low activity and stability of CAR. As such, a rational design campaign was conducted on a well-documented carboxylic acid reductase from Segniliparus rugosus (SrCAR), using vanillic acid as the model substrate. After combined active site saturation and iterative site-specific mutagenesis, the best quadruple mutant N292H/K524S/A627L/E1121W (M3) was successfully obtained. In comparison to the wildtype SrCAR, M3 demonstrated a 4.2-fold increase in catalytic efficiency (kcat/Km), and its half-life (t1/2) was enhanced by 3.8 times up to 385.08 minutes at 40 °C. In silico docking and molecular dynamics simulation provided insights into the improved activity and stability. In the subsequent preparative-scale reaction with 100 mM (16.8 g L-1) vanillic acid, the whole cell catalysis utilizing M3 produced 10.15 g·L-1 of vanillin and 1.11 g·L-1 of vanillyl alcohol, respectively. This work demonstrates a dual improvement in the activity and thermal stability of SrCAR, thereby potentially facilitating the application of carboxylic acid reductase in the biosynthesis of vanillin.


Assuntos
Oxirredutases , Ácido Vanílico , Oxirredutases/química , Benzaldeídos
9.
Acta Biomater ; 178: 68-82, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452962

RESUMO

Oral ulcers can significantly reduce the life quality of patients and even lead to malignant transformations. Local treatments using topical agents are often ineffective because of the wet and dynamic environment of the oral cavity. Current clinical treatments for oral ulcers, such as corticosteroids, have limitations and side effects for long-term usage. Here, we develop adhesive hydrogel patches (AHPs) that effectively promote the healing of oral ulcers in a rat model. The AHPs are comprised of the quaternary ammonium salt of chitosan, aldehyde-functionalized hyaluronic acid, and a tridentate complex of protocatechualdehyde and Fe3+ (PF). The AHPs exhibit tunable mechanical properties, self-healing ability, and wet adhesion on the oral mucosa. Through controlling the formula of the AHPs, PF released from the AHPs in a temporal manner. We further show that the AHPs have good biocompatibility and the capability to heal oral ulcers rapidly. Both in vitro and in vivo experiments indicate that the PF released from AHPs facilitated ulcer healing by suppressing inflammation, promoting macrophage polarization, enhancing cell proliferation, and inducing epithelial-mesenchymal transition involving inflammation, proliferation, and maturation stages. This study provides insights into the healing of oral ulcers and presents an effective therapeutic biomaterial for the treatment of oral ulcers. STATEMENT OF SIGNIFICANCE: By addressing the challenges associated with current clinical treatments for oral ulcers, the development of adhesive hydrogel patches (AHPs) presents an effective approach. These AHPs possess unique properties, such as tunable mechanical characteristics, self-healing ability, and strong adhesion to the mucosa. Through controlled release of protocatechualdehyde-Fe3+ complex, the AHPs facilitate the healing process by suppressing inflammation, promoting cell proliferation, and inducing epithelial-mesenchymal transition. The study not only provides valuable insights into the healing mechanisms of oral ulcers but also introduces a promising therapeutic biomaterial. This work holds significant scientific interest and demonstrates the potential to greatly improve the treatment outcomes and quality of life for individuals suffering from oral ulcers.


Assuntos
Benzaldeídos , Catecóis , Hidrogéis , Úlceras Orais , Humanos , Ratos , Animais , Hidrogéis/farmacologia , Adesivos , Qualidade de Vida , Materiais Biocompatíveis , Inflamação , Antibacterianos/farmacologia
10.
Bioresour Technol ; 398: 130517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437961

RESUMO

The utilization of lignin, an abundant and renewable bio-aromatic source, is of significant importance. In this study, lignin oxidation was examined at different temperatures with zirconium oxide (ZrO2)-supported nickel (Ni), cobalt (Co) and bimetallic Ni-Co metal catalysts under different solvents and oxygen pressure. Non-catalytic oxidation reaction produced maximum bio-oil (35.3 wt%), while catalytic oxidation significantly increased the bio-oil yield. The bimetallic catalyst Ni-Co/ZrO2 produced the highest bio-oil yield (67.4 wt%) compared to the monometallic catalyst Ni/ZrO2 (59.3 wt%) and Co/ZrO2 (54.0 wt%). The selectively higher percentage of vanillin, 2-methoxy phenol, acetovanillone, acetosyringone and vanillic acid compounds are found in the catalytic bio-oil. Moreover, it has been observed that the bimetallic Co-Ni/ZrO2 produced a higher amount of vanillin (43.7% and 13.30 wt%) compound. These results demonstrate that the bimetallic Ni-Co/ZrO2 catalyst promotes the selective cleavage of the ether ß-O-4 bond in lignin, leading to a higher yield of phenolic monomer compounds.


Assuntos
Benzaldeídos , Cobalto , Níquel , Óxidos , Óleos de Plantas , Polifenóis , Zircônio , Lignina , Fenóis
11.
Sci Total Environ ; 927: 171888, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531442

RESUMO

Lignocellulosic biomass is a pivotal renewable resource in biorefinery process, requiring pretreatment, primarily chemical pretreatment, for effective depolymerization and subsequent transformation. This process yields solid residue for saccharification and lignocellulosic pretreatment wastewater (LPW), which comprises sugars and inhibitors such as phenols and furans. This study explored the microalgal capacity to treat LPW, focusing on two key hydrolysate inhibitors: furfural and vanillin, which impact the growth of six green microalgae. Chlorella sorokiniana exhibited higher tolerance to furfural and vanillin. However, both inhibitors hindered the growth of C. sorokiniana and disrupted algal photosynthetic system, with vanillin displaying superior inhibition. A synergistic inhibitory effect (Q < 0.85) was observed with furfural and vanillin on algal growth. Furfural transformation to low-toxic furfuryl alcohol was rapid, yet the addition of vanillin hindered this process. Vanillin stimulated carbohydrate accumulation, with 50.48 % observed in the 0.1 g/L furfural + 0.1 g/L vanillin group. Additionally, vanillin enhanced the accumulation of C16: 0 and C18: 2, reaching 21.71 % and 40.36 %, respectively, with 0.1 g/L vanillin. This study proposed a microalgae-based detoxification and resource utilization approach for LPW, enhancing the comprehensive utilization of lignocellulosic components. The observed biomass modifications also suggested potential applications for biofuel production, contributing to the evolving landscape of sustainable biorefinery processes.


Assuntos
Lignina , Microalgas , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Lignina/metabolismo , Eliminação de Resíduos Líquidos/métodos , Benzaldeídos/metabolismo , Furaldeído/metabolismo , Biomassa , Poluentes Químicos da Água , Chlorella/metabolismo
12.
Microb Pathog ; 190: 106624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492828

RESUMO

Pseudomonas aeruginosa is widely associated with biofilm-mediated antibiotic resistant chronic and acute infections which constitute a persistent healthcare challenges. Addressing this threat requires exploration of novel therapeutic strategies involving the combination of natural compounds and conventional antibiotics. Hence, our study has focused on two compounds; cuminaldehyde and ciprofloxacin, which were strategically combined to target the biofilm challenge of P. aeruginosa. The minimum inhibitory concentration (MIC) of cuminaldehyde and ciprofloxacin was found to be 400 µg/mL and 0.4 µg/mL, respectively. Moreover, the fractional inhibitory concentration index (FICI = 0.62) indicated an additive interaction prevailed between cuminaldehyde and ciprofloxacin. Subsequently, sub-MIC doses of cuminaldehyde (25 µg/mL) and ciprofloxacin (0.05 µg/mL) were selected for an array of antibiofilm assays which confirmed their biofilm inhibitory potential without exhibiting any antimicrobial activity. Furthermore, selected doses of the mentioned compounds could manage biofilm on catheter surface by inhibiting and disintegrating existing biofilm. Additionally, the test combination of the mentioned compounds reduced virulence factors secretion, accumulated reactive oxygen species and increased cell-membrane permeability. Thus, the combination of cuminaldehyde and ciprofloxacin demonstrates potential in combating biofilm-associated Pseudomonal threats.


Assuntos
Antibacterianos , Benzaldeídos , Biofilmes , Ciprofloxacina , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Espécies Reativas de Oxigênio , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Antibacterianos/farmacologia , Benzaldeídos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Virulência , Cimenos/farmacologia , Sinergismo Farmacológico , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos
13.
Expert Opin Pharmacother ; 25(2): 157-170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344818

RESUMO

INTRODUCTION: Sickle cell disease (SCD) is an inherited disorder characterised by polymerisation of deoxygenated haemoglobin S and microvascular obstruction. The cardinal feature is generalised pain referred to as vaso-occlusive crises (VOC), multi-organ damage and premature death. SCD is the most prevalent inherited life-threatening disorders in the world and over 85% of world's 400,000 annual births occur low-and-middle-income countries. Hydroxyurea remained the only approved disease modifying therapy (1998) until the FDA approved L-glutamine (2017), Crizanlizumab and Voxelotor (2019) and gene therapies (Exa-cel and Lovo-cel, 2023). AREAS COVERED: Clinical trials performed in the last 10 years (November 2013 - November 2023) were selected for the review. They were divided according to the mechanisms of drug action. The following pubmed central search terms [sickle cell disease] or [sickle cell anaemia] Hydroxycarbamide/ Hydroxyurea, L-Glutamine, Voxelotor, Crizanlizumab, Mitapivat, Etavopivat, gene therapy, haematopoietic stem cell transplantation, and combination therapy. EXPERT OPINION: We recommend future trials of combination therapies for specific complications such as VOCs, chronic pain and renal impairment as well as personalised medicine approach based on phenotype and patient characteristics. Following recent approval of gene therapy for SCD, the challenge is addressing the role of shared decision-making with families, global access and affordability.


Assuntos
Anemia Falciforme , Benzaldeídos , Dor Crônica , Pirazinas , Pirazóis , Humanos , Hidroxiureia/uso terapêutico , Glutamina/uso terapêutico , Anemia Falciforme/tratamento farmacológico , Dor Crônica/tratamento farmacológico , Combinação de Medicamentos
14.
Cytokine ; 177: 156543, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373365

RESUMO

Treatment against visceral leishmaniasis (VL) presents problems, mainly related to drug toxicity, high cost and/or by emergence of resistant strains. In the present study, two vanillin synthetic derivatives, 3 s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3 t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], were evaluated as therapeutic candidates in a murine model against Leishmania infantum infection. Molecules were used pure (3 s and 3 t) or incorporated into Poloxamer 407-based micelles (3 s/M and 3 t/M) in the infected animals, which also received amphotericin B (AmpB) or Ambisome® as control. Results showed that 3 s/M and 3 t/M compositions induced a Th1-type immune response in treated animals, with higher levels of IFN-γ, IL-2, TNF-α, IL-12, nitrite, and IgG2a antibodies. Animals presented also low toxicity and significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, as compared as control groups mice, with the evaluations performed one and 30 days after the application of the therapeutics. In conclusion, preliminary data suggest that 3 s/M and 3 t/M could be considered for future studies as therapeutic agents against VL.


Assuntos
Benzaldeídos , Leishmaniose Visceral , Leishmaniose , Camundongos , Animais , Micelas , Interleucina-12 , Camundongos Endogâmicos BALB C
15.
Food Res Int ; 180: 114057, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395574

RESUMO

The inhibitory effects of amino acids and their combinations on the formation of heterocyclic amines were investigated in this study. The great potential in the inhibition of HAs was observed in amino acid combinations compared with that of single agents. At a mass ratio of 1:1, a His-Pro combination achieved a maximum inhibitory rate of 80 %, and the total HAs content decreased to 4.70 ± 0.18 ng/g relative to the control (24.49 ± 2.18 ng/g). However, the inhibitory rate of triple combinations showed no obvious increase compared with the binary combinations. Benzaldehyde, phenylacetaldehyde, methylglyoxal, and glyoxal were positively correlated with HAs formation, and His-Pro combination (1:4) led to a significant reduction of benzaldehyde and phenylacetaldehyde at scavenging rates of 79 % and 92 %. Thus, the synergistic inhibition was achieved by simultaneously scavenging these aldehyde intermediates, and other inhibitory target, such as competition with precursors and elimination of final products can serve as supporting factors. These results provide a new perspective for approaches to enhance the suppression of HAs and control the formation of flavor compounds.


Assuntos
Acetaldeído/análogos & derivados , Aminoácidos , Compostos Heterocíclicos , Animais , Bovinos , Benzaldeídos , Aminas/química
16.
Arch Insect Biochem Physiol ; 115(2): e22091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385805

RESUMO

Insects are covered with free neutral cuticular hydrocarbons (CHC) that may be linear, branched, and unsaturated and vary in their chain length. The CHC composition is species-specific and contributes to the adaptation of the animal to its ecological niche. Commonly, CHCs contribute substantially to the inward and outward barrier function of the cuticle and serve pheromonal communication. They are generally determined by gas-chromatography, a time-consuming method requiring detailed expertize, but it is not available in many laboratories. Here, we report on the establishment of a colorimetric method allowing semi-quantitative determination of unsaturated CHCs in Drosophila flies. This method is based on the in vitro reaction of vanillin with double bounds in lipid molecules in an acidic solution to generate a reddish color. We found a robust correlation between gas chromatographic and vanillin-colorimetric data on unsaturated CHCs amounts in single flies. As the role of unsaturated CHCs in the performance of insects in their environment is only partly understood, we think that this novel method would allow fast and broad analyses of this type of CHCs in insects both in the field and in laboratories and thereby contribute to a substantial improvement in the investigation of this matter.


Assuntos
Colorimetria , Drosophila , Animais , Benzaldeídos , Lipídeos
17.
Chem Biodivers ; 21(4): e202301883, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358959

RESUMO

Yerba mate (Ilex paraguariensis) is a forest species consumed in the form of non-alcoholic beverages in South America, with applications in foods, cosmetics, and pharmaceutical industries. The species leaves are globally recognized for their important bioactive compounds, including, saponins. We adjusted the vanillin-acid sulfuric method for determining spectrophotometrically the total saponin in yerba mate leaves. Seeking to maximize the extraction of saponins from leaves, a Doehlert design combined with Response Surface Methodology (RSM) was used, considering ethanol:water ratios and ultrasound times. In addition, the same methodology was used for the analysis of times and temperatures in the vanillin-sulfuric acid reaction heating. The contents of total saponin in mature leaves were compared in four yerba mate clones. The extraction was maximized using 40 % ethanol:60 % water and 60 minutes of ultrasound assisted extraction (UAE) without heating. For the reaction conditions, 70 °C for 10 minutes heating is recommended, and UV/Vis reading from 460 to 680 nm. Using the optimized methodology, total saponin contents ranged from 28.43 to 53.09 mg g-1 in the four yerba mate clones. The significant difference in saponin contents between clones indicate great genetic diversity and potential for clones' selection and extraction of these compounds from yerba mate leaves.


Assuntos
Benzaldeídos , Ilex paraguariensis , Saponinas , Saponinas/análise , Extratos Vegetais , Folhas de Planta/química , Ácidos de Enxofre , Células Clonais/química , Água , Etanol
18.
Environ Res ; 248: 118411, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316382

RESUMO

As a typical heterogeneous catalytic process, the catalytic combustion of toluene over Co3O4-based catalysts is strongly depends on the surface properties of catalysts, especially the concentration of surface oxygen defects. Here, a novel way was proposed to construct chemically bonded CuO-Co3O4 interface by chemical deposition of CuO onto Co3O4 nanoflowers. The interfacial refinement effect between CuO and Co3O4 support disrupted the ordered atomic arrangement and created countless unsaturated coordination sites at CuO-Co3O4 interface, inducing a significant generation of surface oxygen defects. Surface-rich oxygen vacancies enhanced the capacity of 20%CuO/Co3O4-R to adsorb and activate oxygen species. Benefiting from this, 90 % toluene conversion was reached at 228 °C over 20%CuO/Co3O4-R, which was much lower than that over 20%CuO/Co3O4-S prepared by impregnation method and CuO/Co3O4-mix obtained by mechanically mixing way. In-situ DRIFTS analysis revealed that toluene could be directly decomposed into benzaldehyde at the highly defective CuO-Co3O4 interface, leading to toluene oxidation following the path of toluene → benzaldehyde → benzoate → maleic anhydride → water and carbon dioxide over 20%CuO/Co3O4-R, which was significantly different from decomposition mechanism over 20%CuO/Co3O4-S. Additionally, 20%CuO/Co3O4-R displayed terrific recyclability and outstanding stability, showing good application potential.


Assuntos
Benzaldeídos , Cobalto , Óxidos , Oxigênio , Oxirredução , Oxigênio/química , Tolueno/análise
19.
Biotechnol Prog ; 40(2): e3417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415921

RESUMO

Maize bran, an agro-processing waste residue, is a good source of ferulic acid that can be further valorized for vanillin production. However, extraction of ferulic acid from natural sources has been challenging due to low concentrations and intensive extraction procedures. In the present work, ferulic acid streams (purities ranging from 5% to 75%) extracted from maize bran using thermochemical methods were evaluated for biotransformation to vanillin, employing Amycolatopsis sp. as a whole-cell biocatalyst. Initial adaptation studies were critical in improving ferulic acid assimilation and its conversion to vanillin by 65% and 56%, respectively by the fourth adaptation cycle. The effect of cell's physiological states and vanillic acid supplementation on vanillin production was studied using standard ferulic acid as a substrate in an effort to achieve further improvement in vanillin yield. In the presence of vanillic acid, 18 h cultured cells using 2 g/L of standard and isolated ferulic acid produced vanillin concentrations of up to 0.71 and 0.48 g/L, respectively. Furthermore, intermediates involved in the ferulic acid catabolic pathway and their interrelations were studied using GC-MS analysis. Results indicated that two different routes were involved in the catabolism of standard ferulic acid, and similar metabolic routes were observed for an isolated ferulic acid stream. These findings effectively evaluated isolated ferulic acid for sustainable vanillin production while reducing agro-industrial waste pollution.


Assuntos
Amycolatopsis , Zea mays , Amycolatopsis/metabolismo , Zea mays/metabolismo , Ácido Vanílico/metabolismo , Benzaldeídos/metabolismo , Ácidos Cumáricos/metabolismo , Biotransformação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...